BIS(SULFATO)-CYCLOSIPHONODICTYOL A, A NEW DISULFATED SESQUITERPENE-HYDROQUINONE FROM A DEEP WATER COLLECTION OF THE MARINE SPONGE SIPHONODICTYON CORALLIPHAGUM

K. BRIAN KILLDAY, AMY E. WRIGHT,*

Division of Biomedical Marine Research, Harbor Branch Oceanographic Institution, Inc., 5600 US 1 North, Ft. Pierce, Florida 34946

ROBERT H. JACKSON, and MATTHEW A. SILLS

Ciba-Geigy Corporation, Research Department, 556 Morris Avenue, Summit, New Jersey 07901

ABSTRACT.—A new compound, *bis*(sulfato)-cyclosiphonodictyol A [1], which inhibits the binding of [³H]-LTB₄ to intact human neutrophils with an IC₅₀ value of 44 μ M, was isolated from the sponge *Siphonodictyon coralliphagum*. The sponge was collected using the Johnson-Sea-Link manned submersible at a depth of 195 feet in the Bahamas. The compound was isolated via reversed-phase chromatography and its structure determined spectroscopically. To the best of our knowledge, 1 is the first marine-derived compound with two aromatic sulfate ester functionalities, and is also the first in the siphonodictyal series to contain an oxepane functionality.

Many marine sponges are known to yield sesquiterpene-hydroquinone compounds, some examples of which are chromazonarol from Disidea pallescens (1), avarol from Disidea avara (2), aureol and 8-epichromazonarol from Smenospongia aurea (3), and strongylin A from Strongylophora hartmani (4). Siphonodictyon coralliphagum Rützler (Haplosclerida, Niphatidae) is a boring sponge that occurs throughout the Caribbean. In shallow water habitats, it is most commonly observed as a series of bright yellow chimneys protruding from coral heads. In deeper water habitats (>150 feet), it occurs as a thick encrusting yellow mat. A series of sesquiterpene phenolic aldehydes, siphonodictyals A, B, C, D, and E, the monosulfated siphonodictyols G and H, and siphonodictyoic acid have been reported from Siphonodictyon species (5,6). In this paper we describe the bioassayguided isolation and structure elucidation of bis(sulfato)-cyclosiphonodictyol A [1].

Compound 1 was isolated using a bioassay-guided approach from an EtOH extract of Siphonodictyon coralliphagum via solvent partitioning, ultrafiltration, and reversed-phase chromatography on a C₁₈ column. ¹H-Nmr and homonuclear decoupling experiments indicated the presence of two ortho-coupled aromatic protons [δ 7.31 (d, J=9.0 Hz), 7.16 (d, J=9.0 Hz)], four methyl singlets [δ 0.83 (3H, s), 0.86 (3H, s), 0.89 (3H, s), 1.42 (3H, s)], a benzylic methylene group [δ 3.44 (d, J=16.0 Hz), 2.65 (dd, J=16.0 and 9.5 Hz)], and an isolated oxygenated methylene group [δ 4.98 (d, J=15.5

Hz), 4.84 (d, J=15.5 Hz)]. Comparison of the ¹³C-nmr data with those of siphonodictyal A [2] (5) suggested a structure in which a cyclization/reduction has taken place between the C-8 hydroxyl and the C-22 aldehyde to form a sevenmembered cyclic ether. The structure of 1 was confirmed and all chemical shift assignments made by proton-detected one- and multiple-bond ¹H-¹³C correlation experiments (Table 1). The presence of sulfate on one or both of the phenolic hydroxyls was suggested by strong ir bands at 1230 and 1055 cm⁻¹. Fabms confirmed that 1 was a disulfated compound with the formula $C_{22}H_{30}O_9S_2Na_2$. The ¹³C-nmr chemical shift of the C-15 methyl group in $\mathbf{1}(\delta 22.1)$ was consistent with an axial configuration as found in chromazonarol (δ 20.6) rather than the equatorial configuration found in epichromazonarol (δ 27.0) (3). This relative stereochemistry was confirmed by a series of difference nOe experiments. The following enhancements which support the assigned stereochemistry were observed: irradiation of the Me-13 protons enhanced the resonances observed for the Me-12 and Me-15 protons suggesting that all three are axial. Irradiation of the Me-12 protons enhanced the Me-13 proton resonance. Irradiation of the Me-15 protons enhanced the resonances observed for the Me-13 protons and the H-14a proton indicating the assigned stereochemistry at C-9.

The leukotrienes are 5-lipoxygenase metabolites of arichidonic acid. In the lipoxygenase pathway, the enzyme 5lipoxygenase catalyzes the oxidation of arachidonic acid to 5-HPETE. Leukotriene A synthase converts 5-HPETE to

Position	¹³ C δ (mult.)	¹ H δ (mult., J in Hz)	Observed long-range ¹ H- ¹³ C correlations
1	40.7 t	a 0.90 m	
		b 2.13 m	C-3, C-5
2	19.7 t	a 1.50 m	
		b 1.67 m	
3	43.3 t	a 1.15 m	C-2, C-11, C-12
		Ь 1.36 m	
4	34.4 s		
5	57.4 d	0.94 dd (2.1, 12.0)	
6	21.4 t	a 1.39 m	C-8, C-10
		b 1.75 m	
7	41.2 t	a 1.52 m	
	'	b 1.68 m	
8	81.2 s		
9	59.2 d	1.53 d (9.5)	
10	40.1 s		
11	33.8 q	0.86 s	C-3, C-5, C-12
12	21.8 q	0.83 s	C-3, C-5, C-11
13	16.2 q	0.89 s	C-5, C-9, C-10
14	23.7 t	a 2.65 dd (16.0, 9.5)	C-8, C-9, C-16, C-17
		Ь 3.44 d (16.0)	C-8, C-9, C-10, C-16, C-17, C-21
15	22.1 q	1.42 s	C-7, C-8, C-9
16	138.2 s		
17	148.3 s		
18	122.0 d	7.31 d (9.0)	C-16, C-20
19	121.1 d	7.16 d (9.0)	C-17, C-21
20	147.6 s		
21	136.0 s		
22	59.3 t	a 4.84 d (15.5)	C-8, C-16, C-20, C-21
		b 4.98 d (15.5)	C-8, C-16, C-20, C-21

TABLE 1. ¹H- and ¹³C-Nmr Data for 1 (CD₃OD).

the unstable epoxide LTA_4 which is in turn converted to LTB_4 through the action of LTA hydrolase. LTB_4 has been implicated in aggregation, chemotaxis, and degranulation (7). A specific antagonist of LTB_4 receptor binding may have potential in inflammatory and allergic diseases. *bis*(Sulfato)-cyclosiphonodictyol A inhibits binding of $\{{}^{3}H\}$ -LTB₄ to human neutrophils with an IC₅₀ value of 44.5 μM (*n*=3).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES .----Spectral data were measured on the following instruments: ir, Perkin-Elmer 1310; uv, Perkin-Elmer Lambda 3B; nmr, Bruker AM-360 with an Aspect 3000 computer and Bruker AMX-500 with a X-32 computer; ms, Kratos MS-80RFA, FAB-NOBA (Chemical Instrumentation Center, Yale University); optical rotation, Jasco DIP-360 Digital polarimeter. ¹H-Nmr chemical shifts are reported as δ values in ppm relative to CD₃OD (3.30 ppm). ¹³C-Nmr chemical shifts are reported as δ values in ppm relative to CD₃OD (49.0 ppm). ¹³C-Nmr multiplicities were measured using the DEPT sequence, and one- and multiple-bond 'H-¹³C connectivities were determined via the 2D proton-detected HMQC and HMBC experiments, respectively.

ANIMAL MATERIAL.—The sample (DBMR number: 27-IX-88-1-015) was collected in September 1988, off Cockburn Town, San Salvador, Bahamas, on a rock wall at a depth of 195 feet using the Johnson-Sea-Link I manned submersible. The sponge was encrusting, aproximately 50 cm in diameter, yellow externally and internally. The sample corresponds most closely to *Siphonodictyon coralliphagum* (9). A voucher specimen is on deposit at the Harbor Branch Oceanographic Museum, Fort Pierce, Florida (catalog number 003:00907).

BIOASSAY PROTOCOL.—Binding of $[^{3}H]LTB_{4}$ to receptors in human neutrophils was measured as described by Gorman and Lin (8). Intact human neutrophils were suspended in Hank's Balanced Solution (HBSS) at a concentration of 3×10^{6} cells/ assay tube. An aliquot of the cell suspension (300 µl) was added to triplicate tubes containing 50 µl $[^{3}H]LTB_{4}$ (specific activity 32 Ci/mmol, Dupont NEN, Boston, MA) at a final concentration of 0.5 nM, 100 µl buffer, and 50 µl drug or buffer. Nonspecific binding was determined in the presence of 300 nM LTB₄. The reaction was initiated by addition of cell suspension and continued at 4° for 20 min. Bound radioactivity was isolated by vacuum filtration through Whatman GF/C glass fiber filters using a Brandel Cell Harvester and unbound radioactivity removed with 2×5 ml washes with ice-cold saline. Filters were placed in polyethylene scintillation mini-vials to which were added 3.5 ml of Formula-989 scintillation cocktail (NEN). After equilibration, radioactivity determinations and data calculations were performed using non-linear regression analysis on RS-1.

EXTRACTION AND ISOLATION.—The diced sponge (500 g) was extracted by blending with EtOH (3×2000 ml). This extract was dried under vacuum to obtain a yellow hygroscopic solid (43.8 g) which was partitioned between *n*-BuOH and H₂O. The *n*-BuOH fraction was then partitioned between EtOAc and H₂O and the H₂O partition subjected to ultrafiltration on 100, 5, and 1 kDa filters. The <1 kDa fraction was separated by reversed-phase hplc (Vydac protein & peptide C₁₈, H₂O-MeOH, 70:30) to yield 1 (3.4 mg).

bis(Sulfato)-cyclosiphonodictyol A [1].—Colorless amorphous solid; $[\alpha]^{24}D + 12.0^{\circ}$ (c=0.2 MeOH); uv (MeOH) λ max 266 (410), 262 (410), 217 (4200), 203 (9400) nm; ir (film on KBr) ν max 3500 br, 2930, 1463, 1381, 1260, 1230, 1055, 1030, 995, 928, 830 cm⁻¹; ¹H- and ¹³C-nmr data, see Table 1; hrfabms m/z observed 571.1116 [M+Na]⁺ (C₂₂H₃₀O₉S₂Na₃ requires 571.1026).

ACKNOWLEDGMENTS

The authors thank D. Shirley Pomponi (HBOI) for sponge identification and Dan Pentek (Yale University) for mass spectral analysis. This is Harbor Branch Oceanographic Institute Contribution Number 1077.

LITERATURE CITED

- G. Cimino, S. Stefano, and L. Minale, *Experentia*, **31**, 1117 (1975).
- L. Minale, R. Riccio, and G. Sodano, Tetrahedron Lett., 3401 (1974).
- P. Djura, D.B. Stierle, B. Sullivan, and D.J. Faulkner, J. Org. Chem., 45, 1435 (1980).
- A.E. Wright, S.A. Rueth, and S.S. Cross, J. Nat. Prod., 54, 1108 (1991).
- B. Sullivan, P. Djura, D.E. McIntyre, and D.J. Faulkner, *Tetrahedron*, 37, 979 (1981).
- B. Sullivan, D.J. Faulkner, G.K. Matsumoto, H. Cun-Heng, and J. Clardy, *J. Org. Chem.*, **51**, 4568 (1986).
- L. G. Letts, in: "Receptor Data for Biological Experiments, A Guide to Drug Selectivity." Ed. by H.N. Doods and J.C.A. van Meel, Ellis Horwood Limited, 1991, pp. 156–160.
- 8. R.R. Gorman and A.H. Lin, *Methods Enzymol.*, **141**, 372 (1987).
- 9. K. Rützler, Smithsonian Contr. Zool., 77, 1 (1971).

Received 24 January 1995